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KEY FINDINGS
	■ There is substantial variation in health care system capacity across the United States to 

detect, diagnose, and treat early-stage Alzheimer’s disease (AD) with disease-modifying 
therapies.

	■ The estimated wait times and the number of patients treated are sensitive to patient uptake 
of brief cognitive assessments.

	■ Estimated average wait times vary by state and can be three times longer in rural areas com-
pared with urban areas.

	■ Care models that enable primary care practitioners (PCPs) to diagnose and evaluate patients 
for treatment eligibility would make the biggest impact on reducing wait times for special-
ists and increasing the number of people treated from 2025 through 2044 in our analysis. 
Improved triage of patients using blood-based biomarker tests could further reduce 
caseloads for specialists.

	■ Widespread delivery of AD-modifying therapies will require a combination of strategies to 
communicate the value of detection and treatment to patients, integrate PCPs into the detec-
tion and diagnosis pathway, and address capacity disparities across the United States.

Research Report

W
idespread availability of effective disease-modifying therapies (DMTs) would be a break-
through in slowing the progression of early-stage Alzheimer’s disease (AD) to later stages 
of dementia. As an AD DMT has received traditional approval from the U.S. Food and 
Drug Administration (FDA) and more candidates are on the horizon (Reardon, 2023; 

FDA, 2023), with a third having promising Phase 3 clinical trial results (Sims et al., 2023), questions 
remain about how these therapies will be priced, covered by insurance, and delivered. 

https://www.rand.org/pubs/research_reports/RRA2643-1.html
https://www.rand.org/
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Medicare covers therapies with traditional 
approval from the FDA and, under the Centers for 
Medicare & Medicaid Services’ (CMS’s) National 
Coverage Determination, also requires collection of 
real-world evidence through registries (CMS, 2023). 
Reimbursement levels for AD DMTs will have criti-
cal influence on patient uptake of therapies and on 
provider decisions related to the allocation of capac-
ity and health care system infrastructure to detect, 
diagnose, and treat eligible patients.

Early-stage AD—mild cognitive impairment 
(MCI) and mild dementia due to AD—is often undi-
agnosed (Mattke, Jun, et al., 2023). About 12.1 mil-
lion people in the United States are estimated to have 
MCI or cognitive impairment with no dementia 
(CIND) (Hudomiet, Hurd, and Rohwedder, 2023; 
U.S. Census Bureau, 2023), which could be due to AD 
or other causes; however, prevalence estimates vary 
widely (Ward et al., 2012). Factors affecting patient 
care-seeking for diagnosis include attitudes toward 
dementia, including stigma and problems with com-
munication, as well as physicians’ lack of knowledge 
and concerns about misdiagnosis (Bradford et al., 
2009). These factors contribute to the underdiagnosis 
of dementia, with potentially more than 50 percent of 
people with dementia not receiving cognitive evalu-
ations (Boustani et al., 2003; Kotagal et al., 2015), 
and missed or delayed diagnoses are even more 
common among minority populations (Amjad et al., 
2018; Blinka et al., 2023; Lin et al., 2020). Very early 
detection of cognitive impairment is limited because 
cognitive assessments are typically initiated after 
subjective memory complaints and/or observations 
of cognitive impairment by family or friends. As AD 
DMTs become available, patient uptake of cogni-
tive assessments would likely increase, although the 
extent of the increase would depend on the effec-
tiveness of patient outreach against such factors as 
stigma and trust in providers.

The purpose of this study is to demonstrate the 
implications of several uncertain factors and geo-
graphic variation that will affect the delivery of AD 
DMTs. The three research questions we address in 
this report are the following:

1.	 How does primary care capacity for early 
detection of patients with MCI due to AD 
affect the delivery of Alzheimer’s therapies? 

2.	 How do varying patient care-seeking behav-
iors for cognitive assessment affect the deliv-
ery of Alzheimer’s therapies? 

3.	 What is the variation in health system capac-
ity for early detection, diagnosis, and treat-
ment of early-stage AD across the United 
States?

The simulation results in this report are not 
meant to predict what will actually happen with 
treatment delivery in the future, which will hinge on 
coverage and reimbursement decisions. Rather, the 
simulation results illustrate a selected set of possible 
scenarios under specific—and uncertain—conditions 
and demonstrate the relative impact of varying 
patient uptake and capacity and how they interact to 
influence the delivery of AD DMTs.

Overview of Approach

We used a simulation model to assess patient demand 
and provider supply for the delivery of AD DMTs, 
based on methods used in prior analyses (Liu et al., 
2017; Hlavka, Mattke, and Liu, 2018; Liu et al., 2019; 
Baxi, Girosi, and Liu, 2019). We expanded on prior 
modeling in two ways. First, we included the capac-
ity of primary care practitioners (PCPs) who perform 
brief cognitive assessments. Prior models focused 
only on the capacity of specialists and assumed that 
PCP capacity was unconstrained (Liu et al., 2017; 
Mattke et al., 2020; Mattke and Hanson, 2022); how-
ever, PCPs serve an important role in early detection 
and may be a potential bottleneck as well as a poten-
tial resource in the diagnostic pathway. In this study, 
we investigated the impact of changes in PCP capac-
ity and patient uptake of brief cognitive assessments 
in primary care settings on the delivery of therapies.

Second, our model utilizes county-level data, 
taking into account the geographic variations in 
patient populations and health system capacities. 
This approach allows us to capture local variation 
and provide a more accurate assessment of capacity 
constraints and wait times. Furthermore, national-
level estimates that do not account for geographic 
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heterogeneity are likely to underestimate overall 
capacity constraints and mask important variation at 
local levels. For example, for an area with high capac-
ity with an adjacent area with low capacity, people 
could have differential access to care and may travel 
further for care; however, averaging across those two 
areas would underestimate possible constraints.

Conceptual Framework

The conceptual framework underlying the simu-
lation model is shown in Figure 1. The clinical 
pathway is represented by three phases: detection, 
diagnosis, and treatment. Although this pathway is 
a simplified flow between clinical steps that not all 
patients may follow exactly, these steps are typical of 
a patient journey. Each rectangle represents a health 
care resource with finite capacity. Each diamond 
represents a decision, with yellow diamonds indicat-
ing patient decisions and green diamonds indicating 
clinical decisions. 

In this framework, the detection phase begins 
with the population aged 50 and older, which reflects 
the age eligibility criterion used in several late-stage 
clinical trials of AD DMTs (U.S. National Library 
of Medicine, 2021, 2022, 2023). We assume that 
some individuals would never seek a brief cognitive 
assessment, and they exit the model. Other indi-
viduals would consider cognitive assessment each 
year, because of subjective memory complaints or at 
routine visit. We assume that this cognitive testing 
would be a brief cognitive assessment performed by 
a PCP. The Alzheimer’s Association defines a brief 
cognitive assessment as a short evaluation for cogni-
tive impairment, in which the practitioner may ask 
the patient about cognitive concerns, observe cogni-
tive function, seek input from family and friends, 
consider physical exams and medical and family 
histories, and use a structured assessment tool such 
as the Montreal Cognitive Assessment (MoCA) 
(Alzheimer’s Association, 2019). We assume that 
PCPs are primary care physicians, as well as nurse 
practitioners (NPs) and physician assistants (PAs) 

FI GURE 1

Conceptual Framework of the Clinical Pathway Through Detection, Diagnosis, and 
Treatment
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who work in primary care settings. PCPs are a criti-
cal component of the clinical pathway because most 
people would likely be first seen in a primary care 
setting and have cognitive impairment detected by 
a PCP before getting referred to a specialist.1 If an 
individual screens positive (i.e., scores within the 
range for MCI), they would be referred to a dementia 
specialist for further evaluation. Those who do not 
undergo a subsequent cognitive assessment, those 
who screen negative, or those who do not seek a spe-
cialist each year might consider seeking cognitive 
assessment again in the following year.

In the diagnosis phase, dementia specialists 
would evaluate patients. We assume that dementia 
specialists are neurologists, geriatricians, and geriat-
ric psychiatrists. Following a positive screen for MCI 
from a brief cognitive assessment, more comprehen-
sive neuropsychological (or neurocognitive testing) 
is recommended (Petersen et al., 2018). To diagnose 
MCI due to AD, a specialist may order imaging and 
would consider reversible causes of cognitive impair-
ment. If reversible causes of cognitive impairment or 
non-Alzheimer’s etiology are not identified, then they 
may refer patients for biomarker testing to detect 
the presence of amyloid, which is a hallmark of AD. 
To determine eligibility for currently approved AD 
DMTs, a confirmatory biomarker test with an amy-
loid positron emission tomography (PET) scan is 
needed.2 If determined to be eligible, patients would 
be referred to treatment. In the treatment phase, 
there would be routine monitoring for ARIA that 
could result in discontinuation of treatment.

Simulation Model

Our model simulates the progression of patients 
through the clinical pathway and disease states. In 
the clinical pathway, inflows into the health system 
resources are determined by patient uptake and clini-
cal decisions, and outflows depend on health system 
capacity for the service. Clinicians and patients rely 
on the results of diagnostic tests to make decisions, 
which may yield false negatives or false positives. 

When patients receive a referral to the next stage of 
the clinical pathway, they may choose to (1) pursue 
the referral and seek further care, (2) not follow up 
with the referral (but they may return in the clinical 
pathway), or (3) exit the clinical pathway altogether. 
The flows through the clinical pathway are updated 
monthly in the model.

The model uses county-level data, parameters 
drawn from the literature, and assumptions about the 
clinical flow. Many of the assumptions follow from 
prior studies that were informed by expert input 
(Liu et al., 2017, 2019). For this expanded analysis, 
which includes modeling of primary care and patient 
uptake of cognitive assessment, we consulted ten 
different subject-matter experts. The experts were a 
convenience sample of clinicians and health services 
researchers with expertise in primary care, family 
medicine, nursing, neurology, geriatrics, psychiatry, 
radiology, and telemedicine. Example questions from 
our semi-structured interview protocol are shown in 
Appendix C. The assumptions used in this analysis 
reflect our team’s compilation and judgment of the 
input provided from the interviewees and from prior 
published studies. 

For all simulation scenarios, we assume that AD 
DMTs are available and reimbursed by payers start-
ing in 2025. We modeled DMTs delivered by monthly 
intravenous (IV) infusions for 18 months. With treat-
ment, we assume that the progression from MCI due 
to AD to Alzheimer’s dementia reduces by 30 percent. 
Table 1 shows key parameters and the assumed value, 
including mid, low, and high levels for parameters 
that were varied in this analysis. See Table A.1 in 
Appendix A for a summary of all model parameters 
and assumptions.

We use transition probabilities reported in the 
literature as the fraction of people who move to the 
next disease state each year. The disease states are 
normal cognition, MCI, Alzheimer’s dementia, and 
death; see Table A.2 in Appendix A for the annual 
transition probabilities. MCI may arise due to AD or 
other causes.
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Patient Demand and Capacity 
Estimates

Population

We used 2020 county-level population data by five-
year age bins from the Census Bureau as the baseline 
population (U.S. Census Bureau, 2023) (Figure 2). 
The baseline MCI and Alzheimer’s dementia popula-
tions were derived by applying age-specific preva-
lence rates (Hudomiet, Hurd, and Rohwedder, 2022, 

2023) to the population. In each projected year, we 
add a new cohort of 50-year-olds based on national 
population projections (U.S. Census Bureau, 2021). 

We assume that individuals aged 50 and older 
are potentially eligible for treatment. Figure 3 illus-
trates the estimated patient demand at each step 
of the clinical pathway in the first simulation year 
assuming no capacity constraints—i.e., there are no 
wait times for any service.

TABLE 1

Key Parameters and Assumptions
Parameter Value Rationale and Source

Patient uptake of cognitive assessment:
•	 Share of cognitively impaired individualsa who 

ever consider cognitive assessment 
•	 Share of cognitively normal individuals who 

ever consider cognitive assessment 
•	 Share of cognitively impaired individuals who 

seek cognitive assessment each year 
•	 Share of cognitively normal individuals who 

seek cognitive assessment each year 

•	 85% (low 70%, 
high 90%)

•	 25% (low 15%, 
high 50%)

•	 90% (low 80%, 
high 90%)

•	 35% (low 10%, 
high 40%)

These parameters reflect the team’s judgment 
and target the following values collected 
from expert inputs: Approximately 20% of 
the population age 50 and older would seek 
cognitive assessment in the initial year (low 
10%, high 30%).

Patient uptake of evaluation and treatment:
•	 Share of patients who follow up with a 

dementia specialist for further evaluation
•	 Share of referred patients who would seek this 

confirmatory biomarker testing with an amyloid 
PET scan

•	 Share of those who do not seek biomarker 
testing who would return to the specialist in the 
following year

•	 Share of patients with clinically relevant 
amyloid burden who would seek treatment with 
an infusion therapy

•	 50%

•	 80%

•	 50%

•	 80%

Based on expert input

Capacity for a clinical activity:
•	 PCPs for cognitive assessment

•	 Dementia specialists for diagnosis
•	 PET scans for biomarker testing
•	 Outpatient RNs and LPNs for infusions

•	 5% (low 1%, high 
10%)

•	 5%
•	 50%
•	 20%

•	 Based on expert input and lower bound 
based on presence of AD at office visits 
(Santo and Kang, 2023)

•	 Based on expert input (Liu et al., 2017)
•	 Based on expert input (Liu et al., 2017)
•	 Aligned with the historical number of 

infusions (Centers for Disease Control and 
Prevention [CDC], 2017; Liu et al., 2017)

Sensitivity and specificity
•	 MoCA for detecting MCI
•	 Amyloid PET for detecting amyloid

•	 0.84, 0.79
•	 0.92, 0.88

•	 Roalf et al., 2013; Abd Razak et al., 2019
•	 Salloway et al., 2017

•	 Share of MCI patients who have clinically 
relevant amyloid burden consistent with 
Alzheimer’s pathology

•	 42% •	 Janssen et al., 2021

•	 Share of patients receiving infusion therapy 
who develop ARIA and discontinue treatment

•	 4% •	 Salloway et al., 2022

a Cognitively impaired individuals includes those with MCI and Alzheimer’s dementia.

NOTE: LPN = licensed practical nurse; RN = registered nurse.
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 FIGURE 2

Population Age 50 and Older, by County, in 2020

SOURCE: Data based on July 1, 2020, estimates from U.S. Census Bureau, 2021.
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Health System Capacity

The primary source of data for health system capac-
ity in the model is the Area Health Resources File 
(AHRF) 2021–2022, which includes county-level data 
on the health care workforce and health facilities 
(U.S. Department of Health and Human Services, 
Health Resources and Services Administration, 
undated). To estimate the health care workforce in 
future years, we calculated annual growth rates from 
the Health Resources and Services Administration 
(HRSA) health workforce projections from 2020 to 
2035. We carry forward the 2035 annual growth rate 
for each subsequent year through 2044.

Primary Care Workforce 

We used the number of PCPs in each county in 2020 
from the AHRF as the baseline primary care work-
force. We define PCPs as primary care physicians,3 
as well as NPs and PAs who work in primary care 
settings, which are 61.6 percent of all NPs and 
23.1 percent of PAs (American Association of Nurse 
Practitioners, 2022; National Commission on Cer-
tification of Physician Assistants, 2020). To estimate 
the workforce in future years, we used a combined 
projection of primary care physicians, NPs, and PAs 
in the HRSA health workforce projections. 

We estimated that a PCP provides 2,051 visits a 
year on average, derived from the National Ambula-
tory Medical Care Survey (NAMCS) and Association 
of American Medical Colleges (AAMC) physician 
specialty data report (Santo and Kang, 2023; AAMC, 
2021). Of those visits, our status quo assumption is 
that PCPs spend 1 percent of their capacity on brief 
cognitive assessment, which is approximately equal 
to the presence of AD at office visits reported in the 
NAMCS (Santo and Kang, 2023). Based on expert 
input, we varied this assumption between 1 and 
10 percent in alternative scenarios, with 5 percent as 
the mid-level assumption.

Specialist Workforce

The dementia specialist workforce in our model 
consists of neurologists, geriatricians, and geriatric 
psychiatrists. We used data in the AHRF for neurolo-
gists, general internal medicine physicians, family 

medicine physicians, and psychiatrists involved in 
patient care. Based on the 2022 AAMC physician 
specialty data report (AAMC, 2022), we estimated 
that geriatricians represent about 2.6 percent of all 
internal medicine physicians and family medicine 
physicians. Similarly, we estimated that geriatric psy-
chiatrists represent 2.9 percent of psychiatrists (Beck 
et al., 2018). We used the HRSA health workforce 
projections for adult psychiatry, geriatric physicians, 
and neurology physicians to project the number of 
dementia specialists. 

We assume that each dementia specialist pro-
vides 1,576 visits a year (Santo and Kang, 2023; 
AAMC, 2022). Following prior expert input, we 
assume that the share of visits a specialist spends 
on diagnosis and evaluation of MCI due to AD is 
5 percent.

PET Scanners

We used AHRF data on the distribution of PET scan-
ners in hospitals in each county in 2020. The total 
number of PET scanners in hospitals from the AHRF 
(705) is comparable to the number reported by the 
Organisation for Economic Co-operation and Devel-
opment (OECD), which also reports that 41 percent 
of PET scanners are in hospitals (OECD, 2023). We 
benchmarked the number of PET scanners, 2,371 
scanners in all settings (Lam et al., 2021), using a 
ratio (2,371/705) to scale up the county estimates. To 
estimate the number of PET scanners in future years, 
we linearly fit the number of total PET scanners from 
2011 to 2020 OECD data and extrapolated to 2044 to 
calculate annual growth rates. 

Based on 2020 OECD data, we calculated the 
average number of PET scans per PET scanner to 
be 1,166 per year. Following prior analyses based on 
expert input, we assumed that the share of PET scans 
for determining patient eligibility for AD DMTs is 
50 percent (Liu et al., 2017). 

Infusion Workforce

We assumed that IV infusions would be adminis-
tered by RNs and LPNs and used this workforce to 
define infusion capacity. We used county-level AHRF 
data on full-time and part-time RNs and LPNs in 
short-term general hospitals, short-term non-general 
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hospitals, and long-term hospitals. We then included 
RNs and LPNs who work in outpatient settings, 
which is 20 percent of all RNs and 15.2 percent of all 
LPNs, respectively (U.S. Bureau of Labor Statistics, 
2022; Coffman, Chan, and Bates, 2015). To estimate 
the infusion workforce in future years, we used the 
HRSA health workforce projections for RNs. 

We estimated that the average number of infu-
sions an RN or LPN provides is 1,440 per year 
(Rondinelli et al., 2014). We assumed that the share 
of infusions for AD DMTs is 20 percent, which 
approximates the historical number of injections 
and infusions of therapeutic and/or prophylactic 
substances, excluding cancer chemotherapy and 
biologic response modifiers, reported in the 2011 
and 2013 NAMCS and National Hospital Ambu-
latory Medical Care Survey (NHAMCS) (CDC, 
2017).

Smoothing Capacity Across Counties

We accounted for the possibility that individuals 
may seek health care services in counties other than 
their county of residence. To approximate this care 
received across counties, we implemented a smooth-
ing approach that distributes capacity for PCPs, 
dementia specialists, PET scanners, and outpatient 
RNs and LPNs across counties within the same 
state. Without smoothing, simulating patients and 
capacity using the raw capacity data would imply 
that no one accesses service outside their county of 
residence, which would be unrealistic. However, it 
is challenging to simulate exactly how much care is 
accessed in other counties. See Appendix B for tech-
nical details on our smoothing algorithm. Briefly, we 
used a smoothing algorithm that effectively shares 
the capacity from counties with higher capacity to 
adjacent counties with lower capacity. The smooth-
ing process iterates until a predefined level of access 
across the state is reached. To parameterize a reason-
able level of equal access within each state, we used 
the Gini index with a threshold of 0.2 (Teng et al., 
2011). For example, a given state may have PET scan-
ners only in few urban centers and have a Gini of 
0.7. Our smoothing algorithm would allow adjacent 
counties (and counties adjacent to those counties) to 

share that capacity until the Gini is 0.2 in the state, 
approximating people accessing care in other coun-
ties. We also allowed 10 percent of the population 
in each state to access services in any county within 
the state. For the four health care resources in the 
model, Figure 4 shows the raw capacity in counties 
from the AHRF and the capacity after our smooth-
ing algorithm. Resources that are more concentrated 
(i.e., have more unequal access geographically), such 
as PET scanners, are smoothed more than resources 
that are less concentrated, such as PCPs. 

Simulation Scenarios

Table 2 shows a summary of selected scenarios. See 
Table A.3 in Appendix A for the detailed assump-
tions in each scenario. We included a “status quo” 
scenario that reflects patient demand and health 
system capacity estimated at current levels.4 The 
“base case” scenario reflects our mid-level assump-
tions for patient uptake and health system capacity.

In alternative PCP capacity scenarios, we varied 
the capacity and role of the primary care workforce 
in detection and diagnosis. In “low PCP” and “high 
PCP,” PCP capacity for detection is 1 and 10 per-
cent, respectively (base case 5 percent). In “blood 
biomarker,” PCPs order blood-based biomarker 
tests that allow for triaging patients with MCI and 
Alzheimer’s pathology. In “dementia specialists plus 
PCPs,” we assume that diagnosis and treatment man-
agement are protocolized such that PCPs and special-
ists can evaluate patients. 

In alternative patient uptake scenarios, we varied 
patient uptake of brief cognitive assessments. The 
mid-level uptake assumptions result in 20 percent 
of the age 50+ population who seek a brief cognitive 
assessment in the first year (Table A.3 in Appen-
dix A). The low-level and high-level uptake assump-
tions result in 10 percent and 30 percent, respectively, 
of the age 50+ population who seek a brief cognitive 
assessment in the first year.

For comparison, we have included a “no con-
straints” scenario in which we assume that there is 
enough capacity to serve all patients seeking detec-
tion, diagnosis, and treatment with no wait times.
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FI  GURE 4

Health System Capacity per Capita Among the Population Aged 50 and Older, by 
County, Before and After Smoothing, 2020
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This report is accompanied by a web-based tool 
that allows users to adjust key parameters to explore 
different scenarios. See www.rand.org/t/TLA2643-1. 

Simulation Results

Status Quo

In the status quo scenario, the main capacity con-
straint is access to dementia specialists. We estimate 
up to about 1.6 million patients waiting in 2028 
(Figure 5), with average wait times of 19 months 
(Figure 6). There are shorter waits for PET scanners 

of about two to seven months, and no waits for PCPs 
and infusions. We estimate that 1.5 million patients 
with MCI due to AD would be treated between 2025 
and 2044.

 Base Case: Mid Patient Uptake and 
Capacity

Relative to the status quo scenario, there are more 
patients waiting (reflecting the assumptions in 
which increased patient demand outpaces increased 
capacity) but also more patients treated in the base 
case scenario. Under the base case assumptions, the 
main capacity constraint is also access to dementia 
specialists, with 0.8 million patients waiting initially 
in 2025 and up to about 5.4 million waiting in 2032 
(Figure 7). There are no waits for PCPs. Because 
of long queues for specialists, on average, there are 
shorter waits for PET scanners that follow the waits 
to see a specialist, of about three to ten months, and 
no waits for infusions. The total average wait times 
are about 18 months in 2025, and they peak at about 
55 months in 2030 (Figure 8). The queues and wait 
times begin declining after 2030 as the prevalent 
population of people with MCI due to AD clears the 
queues; in later years, the eligible population reflects 
people with incident MCI due to AD. We estimate 
that 2.1 million patients with MCI due to AD would 
be treated between 2025 and 2044.

TAB LE 2

Simulated Scenarios
Scenario Patient Uptake Primary Care Capacity

Status quo Estimated current level carried forward Estimated current level carried forward

Base case Mid uptake Mid capacity

Low PCP Mid uptake Low PCP capacity 

High PCP Mid uptake High PCP capacity

Blood biomarker Mid uptake PCP triage of MCI due to AD using blood-based 
biomarker test

Dementia 
specialists plus 
PCPs

Mid uptake Combined dementia specialist and PCP capacity 
for diagnosis and treatment management based on 
protocolized evaluations

Low uptake Low uptake of brief cognitive assessment Mid capacity

High uptake High uptake of brief cognitive assessment Mid capacity

No constraints Mid uptake No constraints

FIGURE 5
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Varying the Capacity and Role of 
Primary Care

With lower PCP capacity for brief cognitive assess-
ments, we estimate average wait times for PCPs of 
between one and seven months from 2025 to 2035 
and less than one month after 2035 (top left panel 

of Figure 9). However, total average wait times 
(peaking at about 52 months in 2031) are similar 
to the base case because the specialist wait times 
are shifted to PCPs—i.e., increased waits for PCPs 
are offset by decreased waits for specialists. Higher 
PCP capacity (top right panel of Figure 9) does not 
alter total time to receive treatment relative to the 
base case, because specialists are the most limited 
resource. Scenarios with both lower and higher 
PCP capacity result in a similar number of patients 
treated as the base case.

However, there may be ways to engage PCPs to 
dramatically decrease specialist wait times, either by 
improving the accuracy of PCP cognitive assessments 
or by allowing PCPs to perform clinical tasks usually 
undertaken by specialists. We modeled the impact of 
administering a blood-based biomarker test for amy-
loid to all patients who score as having MCI based on 
a MoCA in primary care settings (bottom left panel 
of Figure 9). This improves triage by decreasing the 
number of false positives from patients who do not 
have MCI or who have MCI due to reasons other than 
AD, greatly reducing specialist wait times. However, 
average wait times for specialists are still long, with 
total average wait times peaking at about 33 months 

F IGURE 6
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in 2030. The estimated number of patients with MCI 
due to AD treated between 2025 and 2044 increased 
to 2.6 million.

Under a scenario in which PCPs could undertake 
diagnostic and evaluation activities typically done by 
specialists, such as more comprehensive neurocogni-
tive testing and ordering advanced imaging, then 
queues for specialists could be effectively eliminated 
(bottom right panel of Figure 9). However, PET scan-
ners become the rate-limiting step in most geogra-
phies, with average wait times ranging from nine to 
23 months. We estimate that 3.4 million patients with 
MCI due to AD would be treated between 2025 and 
2044.

Varying Patient Uptake of Brief 
Cognitive Assessments

Lower patient uptake of brief cognitive assessments 
decreases the number of patients getting referred to 
specialists and average wait times (Figure 10). How-
ever, fewer patients (1.9 million between 2025 and 
2044) are treated relative to the base case. Higher 
patient uptake increases the number of patients dra-

matically, and total average waits peak at about 80 
months in 2033. Because of the long wait times, the 
estimated number of patients treated is similar to the 
lower-uptake scenario (1.9 million between 2025 and 
2044) and lower than the base case.

Comparing Scenarios

Figure 11 shows the total number of patients who 
have MCI due to AD and are treated and the aver-
age wait time over the 2025 to 2044 period for each 
scenario. Relative to the status quo, the base case, 
scenarios varying PCP capacity (low PCP and high 
PCP), and scenarios varying patient uptake (low 
uptake and high uptake) all increase the total number 
of patients treated from about 1.7 million to about 
2.2–2.5 million, but there are substantial increases 
in average wait times as patient uptake increases. 
Without other interventions, high uptake can nega-
tively impact the total number of patients treated, as 
queues becomes so long that many patients’ disease 
has progressed before it can be addressed by treat-
ment or patients die. When the PCPs are generally 
not rate limiting, varying PCP capacity alone makes 

FIG URE 8

Estimated Average Wait Times, by Year, in Base Case (months)
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very little difference to total wait times; however, this 
could change with alternate sets of assumptions with 
low PCP capacity combined with high patient uptake.

Expanding the role of PCPs in detection and 
diagnosis of MCI due to AD has the potential to 
reduce wait times and increase the number treated. 
The blood biomarker scenario reduces overall aver-
age wait times (to 23 months) and increases the 
number treated (to 3.0 million) relative to the base 
case (37 months and 2.5 million, respectively). The 
“dementia specialists plus PCPs” scenario moves the 

estimates further toward the “no constraints” sce-
nario (4.9 million treated), with 16 months for the 
overall average wait time and 3.9 million patients 
treated.

Geographic Variation in Wait Times

In each scenario, the wait times vary geographically. 
Figure 12 illustrates the variation in wait times by 
urbanicity in the base case scenario. Wait times are 
longer in rural and suburban counties compared with 

FIGURE 9

Estimated Average Wait Times, by Year, in Alternative PCP Scenarios (months)
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FIGU RE 10

Estimated Average Wait Times by Year in Alternative Patient Uptake Scenarios (months)
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Comparison of Treated Patients and Average Wait Time in Scenarios, 2025–2044
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FIGURE  12

Estimated Average Wait Times by Urbanicity of Counties in Base Case (months)
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urban counties, with the peak of wait times being 
more than three times longer in rural areas than 
in urban areas. Although wait times are longer in 
rural and suburban counties, the number of patients 
waiting is fewer due to the smaller population sizes 
in those areas (data not shown).5 Small increases in 
specialist and PET scanner access for rural and sub-
urban areas could dramatically decrease wait times. 

Figure 13 shows the variation in wait times by 
state in the base case scenario. Average waits are 
shorter in areas with greater specialist access, such 
as New England and parts of the Midwest. However, 
average waits are much longer than average in parts 
of the South and Mountain West, particularly in 
states with lower numbers of specialists per capita. 

Limitations

This analysis has several limitations. We modeled 
a simplified clinical pathway that captures only 
certain patient journeys. For example, we assumed 
that a proportion of individuals who are cognitively 
normal at baseline never undergo assessment—i.e., 
they do not re-enter the model even if they develop 
cognitive impairment in future years. This contrib-
utes to underestimation of the number of patients 

going through the clinical pathway. Although the 
model does not encompass all possible patient jour-
neys, it does allow for comparisons of the relative 
impact of policies and strategies aiming to engage 
patients and increase the allocation of health system 
resources. For example, some stakeholders may focus 
on improving communication of the value of early 
detection and treatment to patients, while others may 
focus on enhancing the capabilities of PCPs to dedi-
cate resources for early detection or embedding new 
technologies to streamline detection.

While we benchmarked our assumptions of 
patient uptake of cognitive assessment on available 
information about how often cognitive assessments 
are performed in Medicare annual wellness visits, 
how often people have routine visits to PCPs, and 
expert input, there is limited information on how 
patients’ care-seeking behaviors for cognitive assess-
ment would change if AD DMTs were widely avail-
able and covered by insurance.6 If AD DMTs were 
available and reimbursed by payers, patient care-
seeking would be strongly influenced by factors that 
include price, effectiveness, and side effects of thera-
pies that are still to be determined.

In this analysis, we estimated the number of 
dementia specialists based on estimates of neurolo-

FIGURE   13

Average Wait Times in the Base Case, by State, 2025–2044
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gists, geriatricians, and geriatric psychiatrists, and 
we did not distinguish between these three types of 
specialists. These specialists will vary in their likeli-
hoods of seeing patients who may have early-stage 
AD and of prescribing AD DMTs and monitoring 
the course of treatment. Our assumptions on demen-
tia specialist capacity for diagnosis, evaluation, and 
treatment with AD DMTs reflect the average across 
these types of specialists. Further work would be 
needed to better understand difference between the 
specialist types.

Although we included two scenarios that 
increased the role of PCPs by using blood-based bio-
markers and combining PCP and specialist capacity 
for diagnosis and treatment management, we did not 
assess the time, training, infrastructure changes, and 
other considerations that would be needed to enable 
PCPs to dedicate resources to these activities. Inte-
grating blood-based biomarkers into workflows may 
be relatively straightforward but would still require 
time, while having PCPs engage in diagnosis and 
treatment management would require substantial 
investments in training and workflow adjustments, 
as well as the right conditions in terms of reimburse-
ment and workforce to take over some existing tasks.

This simulation model is not an agent-based 
model and does not contain heterogeneity in patient 
characteristics beyond disease states and county of 
residence. An agent-based approach would allow for 
further exploration of how subgroups of patients may 
have different uptake behaviors and access to provid-
ers. For example, it is documented that Black and 
Hispanic patients are more likely to have missed or 
delayed dementia diagnoses (Lin et al., 2020).

The geographic smoothing of capacity between 
counties that we use in this analysis is a rough 
approximation of people accessing services outside 
their county of residence. We constrained people to 
use resources only within their state of residence, but 
people may also choose to travel outside their state 
for care. Furthermore, it is possible that our smooth-
ing algorithm assumes greater access to services than 
what is achievable in reality given barriers to travel. 
Future work is needed to better understand travel 
patterns and how they would affect the dynamics 
between patient demand and provider supply. Future 

sensitivity analyses could also explore confidence 
intervals around estimates.

In this study, we did not vary all possible 
assumptions. For example, we did not vary assump-
tions related to confirmatory biomarker testing. Of 
the four resources we examined, PET scanners are 
the most unequally distributed across the United 
States; scanners are typically centrally located in 
urban areas. Future analyses could examine alterna-
tive scenarios for making access to confirmatory 
biomarker testing more equitable, such as by using 
cerebrospinal fluid (CSF) testing or improved bio-
markers, as well as how other biomarkers, such as 
apolipoprotein E (ApoE) status, could be part of 
patient and provider decisionmaking for evaluation 
and treatment management. 

The focus of this study is on AD DMTs. Other 
than treatment, we did not assess potential benefits 
of early detection, such as care planning, treatment of 
symptoms, and financial and legal planning.

Last, this study did not assess several impor-
tant factors that could influence access to care. 
For example, we did not directly assess the roles of 
financial barriers to patient uptake and reimburse-
ment to provider capacity allocations. Furthermore, 
future technological and policy developments could 
substantially change access to care. Our aim with 
the alternative scenarios is to provide a range of what 
may be possible for uptake and capacity allocations, 
but these are still a narrow set of possible scenarios 
for a simplified clinical pathway that does not reflect 
all care pathways that people with cognitive impair-
ment may take.

Discussion

Our results suggest that engaging the primary care 
workforce in the diagnostic process would be vital 
to accelerate the delivery of AD DMTs, which will 
overwhelm neurology and geriatric practices that 
often already have wait lists for appointments. While 
there are primary care–led memory clinic models 
(Bender et al., 2022; Lee et al., 2014; Callahan et al., 
2011; Boustani et al., 2005), widespread engagement 
of PCPs in this process faces challenges with the need 
to establish content expertise in cognitive assess-
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ment and the trade-offs of shifting resources away 
from other activities. A recent work group of national 
experts recommended the following three strategies 
to encourage the use of brief cognitive assessments 
in primary care: providing suitable assessment tools, 
integrating assessments into routine workflows, and 
implementing payment policies that promote use 
of assessments (Mattke, Batie, et al., 2023). While 
PCPs are technically capable of performing cognitive 
assessments and neuropsychological testing, most do 
not do them regularly, given trends toward billing 
higher volumes of services and the time it takes to do 
testing. Expanding the role of PCPs in detection and 
diagnosis would require training and experience, and 
the extent of PCP engagement would realistically be 
limited by competing demands and potential pro-
vider burnout. Furthermore, the role of primary care 
in detection and diagnostic activities will depend 
on reimbursement levels and the development of 
guidelines and standard protocols to streamline 
workflows.

Triage of patients could be improved with the 
use of blood-based biomarkers for AD, development 
of blood biomarkers for other types of dementia, 
and digital biomarkers. The use of these biomarkers 
would need to be integrated into workflows, ideally 
in primary care settings. While improved availabil-
ity and accuracy of biomarkers for detection would 
allow for better triage, protections for information 
generated by biomarkers will need to be considered, 
especially if they are widely used at early stages of 
AD. The protections should consider implications for 
individual privacy, health insurance, employment, 
and genetic relatives. 

Patient care-seeking levels will matter for the 
delivery of AD DMTs and can exacerbate capacity 
bottlenecks. How uptake increases among eligible 
individuals who would benefit from treatment, indi-
viduals with MCI from other causes, the “worried 
well,” and those with later-stage dementia affects 
estimated wait times and the total number treated. 
In addition to policies and programs focused on 
building capacity, improved patient awareness and 
provider training are essential to reduce stigma and 
enable clear communication about cognitive decline. 

An area that needs more research is how computer-
based testing could be integrated for initial assess-
ments and could help reduce the need for more com-
prehensive evaluation to identify patients who are not 
eligible for treatment.

Geographic variation in patients and capac-
ity result in large differences in estimated wait 
times. Rural areas and certain states have specialist 
shortages that limit access to diagnosis and evalu-
ation. Our estimates of long wait times for rural 
populations reflect disparities in access to special-
ists because people already have difficulty getting 
appointments. Our analysis also draws attention to 
states in which addressing capacity constraints would 
be most critical. Under our base case assumptions, 
the states with the longest wait times are Alaska, 
Arkansas, Idaho, Mississippi, Montana, Nevada, 
Oklahoma, and Wyoming, which result largely from 
low levels of dementia specialists per the population 
aged 50 and older. Primary care models and tele-
health models could help improve access to care in 
these areas. Further analyses of capacity constraints 
at sub-national levels could help county and state 
officials and health system leaders consider ways to 
collaborate and jointly allocate resources.

There is the possibility that effective Alzheimer’s 
therapies will be available but system-level barri-
ers to access would mean that people with cognitive 
impairment would not benefit from the therapies. 
However, our estimates are not meant to predict 
exactly what treatment delivery will look like in the 
future. Rather, the dynamic modeling of alternative 
scenarios can help inform where bottlenecks in the 
system may occur and how components of the clini-
cal flow could be organized to best serve patients. 
Our analysis suggests that strategies to alleviate the 
patient caseload on specialists for evaluation and 
diagnosis are needed. Further work is needed to 
evaluate how primary care–led models of care can 
widely and effectively evaluate and manage treatment 
for people with early-stage AD, as well as how tech-
nological advancements, such as improved biomark-
ers and computerized testing, can be integrated into 
workflows to better serve patients. 
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APPENDIX A

Model Parameters, 
Assumptions, and Projections

Table A.1 shows model parameters for assumptions 
related to patient uptake, clinical decisions, capacity, 
and tests.

Transition probabilities (Table A.2) are derived 
from Davis et al., 2018. We calculated an annual 
transition matrix for people aged 50 years or older 

by weighting two transition matrices (for age 65 and 
age 75) based on the share of 50+ population aged 
less than 70 or 70 and older. We considered mild, 
moderate, and severe Alzheimer’s dementia as one 
state.

Figure A.1 shows the projected workforce and 
PET scanners used in the simulation.

Table A.3 shows the patient uptake and primary 
care capacity assumptions in each scenario.

TABLE A.1

Model Parameters and Assumptions

Parameter Value Description

Patient Uptake Assumptions

Share of age 50+ population that 
seeks a brief cognitive assessment: 

Parameters below adjusted to target 20% of the population seeking a brief 
cognitive assessment in the first year, which is based on expert input; 
range provided by experts: 12%–64%. The low assumptions target 10% 
and the high assumptions target 30% in the first year.

•	 for those with cognitive 
impairment who ever seek 
assessment

85% Low assumption is 70%.
High assumption is 90%.

•	 for those with normal cognition 
who ever seek assessment

25% Low assumption is 15%.
High assumption is 50%.

•	 for those with cognitive 
impairment who seek assessment 
in a given year

90% Low assumption is 80%.
High assumption is 90%.

•	 for those with normal cognition 
who seek assessment in a given 
year

35% Low assumption is 10%.
High assumption is 40%.

Share of MCI population who choose 
to visit dementia specialist (initially or 
a return visit the next year)

50% Assumption based on expert input; range provided by experts: 30%–80%.

Share of MCI population referred for 
biomarker test who seek testing

80% Assumption based on expert input; range provided by experts: 80%–95%.

Share of AD-MCI patients eligible for 
treatment who seek treatment

80% Assumption based on expert input; range provided by experts: 60%–90%.

Clinical Parameters

Share of MCI patients with other 
health conditions who would preclude 
treatment

10% Assumption based on expert input.

Share of MCI patients who have 
clinically relevant amyloid burden

42% Estimated from Janssen et al., 2021.

Share of MCI patients under treatment 
who discontinue due to ARIA

4% Estimated based on 6.2% of patients treated with aducanumab and who 
developed ARIA over 76 weeks (Salloway et al., 2022). 
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Parameter Value Description

Capacity Assumptions

Average number of visits by a PCP per 
year

2,051 Estimated from the number of visits to PCP in 2019 from the NAMCS and 
the number of PCP in 2019 from the AHRF.

Share of PCP visits for cognitive 
assessment

5% Assumption based on expert input; range provided by experts: 1%–10%.
Low assumption is 1%, based on the presence of AD at office visits in 
2019 (Santo and Kang, 2023).
High assumption is 10%.

Average number of visits by a 
dementia specialist per year

1,576 Estimated from the number of visits to surgical and medical specialists in 
2019 from the NAMCS and the number of medical specialists (patient care) 
in 2020 from the AHRF.

Share of dementia specialist visits for 
diagnosis, evaluation, and treatment 
management

5% Assumption based on expert input; range provided by experts: 0%–20%.

Share of PET scans for amyloid 
detection

50% Assumption based on expert input (Liu et al., 2017).

Average number of infusions by a 
full-time outpatient RN or LPN per year

1,440 Estimated from the number of times per shift spent on initiating and 
managing treatments for an ambulatory RN (Rondinelli et al., 2014).

Share of infusions for administering 
AD DMTs

20% Assumption to align with the historical number of infusions used in prior 
modeling (CDC, 2017; Liu et al., 2017).

Test Parameters

Brief cognitive assessment, sensitivity 
and specificity

0.84 and  
0.79

Sensitivity and specificity of MoCA to detect MCI (Roalf et al., 2013; Abd 
Razak et al., 2019) 

Blood-based biomarker, sensitivity 
and specificity

0.89 and  
0.69

Sensitivity and specificity of blood-based biomarker test to detect amyloid 
(Palmqvist et al., 2019).

Amyloid PET scan, sensitivity and 
specificity

0.92 and  
0.88

Sensitivity and specificity of PET to detect amyloid (Salloway et al., 2017).

Table A.1—Continued

TABLE A.2

Annual Transition Probabilities

Normal 
Cognition

MCI Not Due 
to AD

MCI Due to AD, 
Untreated

MCI Due to AD, 
Treated

Alzheimer’s 
Dementia Death

Normal cognition 0.917 0.03 0.039 0 0 0.01

MCI not due to AD 0 0.92 0 0 0 0.08

MCI due to AD, untreated 0 0 0.77 0 0.216 0.014

MCI due to AD, treated 0 0 0 0.835 0.151 0.014

Alzheimer’s dementia 0 0 0 0 0.938 0.062

Death 0 0 0 0 0 1

SOURCE: Derived from Davis et al., 2018.
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FIGURE A.1

Projected Capacity, 2020–2045 

SOURCE: Features data from U.S. Department of Health and Human Services, Health Resources and Services Administration, undated; U.S. 
Department of Health and Human Services, Health Resources and Services Administration, 2023; OECD, 2023; Lam et al., 2021.
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TABLE A.3

Patient Uptake and Primary Care Capacity Assumptions in Alternative Scenarios

Scenario Patient Uptake Primary Care Capacity

Status quo Estimated current uptake of brief cognitive assessment: 
•	 65% of cognitively impaired and 10% of cognitively 

normal ever seek cognitive assessment 
•	 60% of cognitively impaired and 10% of cognitively 

normal seek cognitive assessment each year 
(7% seek assessment in the initial year)

Estimated current capacity: 
•	 1% of PCP visits

Base case Mid uptake of brief cognitive assessment:
•	 85% of cognitively impaired and 25% of cognitively 

normal ever seek cognitive assessment 
•	 90% of cognitively impaired and 35% of cognitively 

normal seek cognitive assessment each year 
(20% seek assessment in the initial year)

Mid capacity:
•	 5% of PCP visits

Low PCP Mid uptake (same as base case) Low PCP capacity (same as status quo):
•	 1% of PCP visits

High PCP Mid uptake (same as base case) High PCP capacity:
•	 10% of PCP visits

Blood 
biomarker

Mid uptake (same as base case) PCP triage of MCI due to AD using blood-based 
biomarker test

Dementia 
specialists 
plus PCPs

Mid uptake (same as base case) Combined dementia specialist and PCP 
capacity for diagnosis and treatment 
management based on protocolized evaluations

Low uptake Low uptake of brief cognitive assessment:
•	 70% of cognitively impaired and 15% of cognitively 

normal ever seek cognitive assessment
•	 80% of cognitively impaired and 10% of cognitively 

normal seek cognitive assessment each year
(10% seek assessment in the initial year)

•	 Mid capacity (same as base case)

High uptake High uptake of brief cognitive assessment:
•	 90% of cognitively impaired and 50% of cognitively 

normal ever seek cognitive assessment
•	 90% of cognitively impaired and 40% of cognitively 

normal seek cognitive assessment each year
(30% seek assessment in the initial year)

•	 Mid capacity (same as base case)

No constraints •	 Mid uptake (same as base case) •	 No constraints
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APPENDIX B

Technical Details

Smoothing Capacities 

The raw capacity data from AHRF represent the 
amount of health care resources available in each 
U.S. county. Because individuals are not con-
strained to access health resources in the county 
where they reside, the AHRF data do not accu-
rately represent the actual level of access to health 
resources. Therefore, in order to make our simula-
tion model realistic, we need to account for the fact 
that the actual (or realized) distribution of resources 
is far less unequal than the one represented by the 
raw AHRF data. 

In order to provide a measure of the degree to 
which health resources are unequally distributed 
across counties, we computed the Gini index for the 
four health care resources considered in this report 
using the raw AHRF county-level data; their distribu-
tion across the U.S. states is shown in Figure B.1. The 
Gini index is commonly used as a measure of income 
inequality, with 0 representing perfect equality and 1 
representing perfect inequality (Semega and Kollar, 
2022). International comparisons commonly use the 
following thresholds to describe the Gini index: <0.2 
as perfect income equality, 0.2–0.3 as relative equal-
ity, 0.3–0.4 as adequate equality, 0.4–0.5 as high dis-
parity, and above 0.5 as severe disparity (Teng et al., 
2011). In the context of health care capacity, a high 
value of the Gini index means that the resources are 
highly unequally distributed, or equivalently highly 
concentrated in few counties.

Not surprisingly, the distribution shows that PET 
scanners and dementia specialists are unequally dis-
tributed in most states, with Gini indices much above 
0.4, which is already considered a high value. While 
the Gini index of actual resource use is not known, 
we assumed in this report that it would be roughly 
around 0.2, corresponding to relative equality based 
on the commonly used thresholds above. However, 
it would require further study to determine the level 
that best approximates actual access levels.

Our overall strategy is therefore to geographi-
cally smooth the density of health resources (i.e., 
the capacity per capita) provided by the AHRF data 
in such a way that the final Gini index for all the 

four health resources we considered was approxi-
mately 0.2. The effect of smoothing is to redistribute 
resources from areas with high capacity to areas of 
low capacity. This simulates the fact that individuals 
in areas with zero or low capacity will travel to areas 
with higher capacity and that the resulting utiliza-
tion pattern is as if some resources were moved from 
high- to low-capacity areas.

While geographic smoothing is a well-studied 
topic, we could not use standard methods to smooth 
the density of resources across counties, because 
these methods fail to maintain the total capacity 
constant (Lawson et al., 2016).  

Technically, the smoothing algorithm has two 
components:

• The first component is the smoothing for-
mula for the density of resources experienced 
by the population of any given county. The 
formula requires knowledge of the amount of 
resources available in nearby counties, as well 
as an estimate of the number of people who 
may seek care in each of those counties.

FIGURE B.1

Distribution of Gini Index over States
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•	 The second component is a model that pro-
duces realistic estimates of how many people 
seek care in each county. In this context, real-
istic means that the model captures (1) the fact 
that people may benefit from seeking care in 
counties with higher capacity than their own 
county of residence and (2) the fact that there 
are barriers to travel that limit the amount of 
resource sharing across counties. Without any 
smoothing, we would underestimate access to 
resources because we would be assuming that 
no one travels to other counties for care.

We describe each component in the following 
subsections.

Smoothing Formula

Each county i has a population Pi and is endowed 
with an amount Ci of a health resource (e.g., PET 
scanners). The resource Ci is shared equally across 
all individuals who are in the county at a given time. 
The nominal density (derived from AHRF) of the 
resource is ​​d​ i​​  =  ​​C​ i​​ _ ​P​ i​​ ​​ . However, as people travel to seek 
care, the population in county i is ​​P​ i​ 

*​  ≠  ​P​ i​​​ and com-
prises residents who have not traveled and travelers 
from other counties. Therefore, the local density, that 
is, the realized density experienced by the combina-
tion of residents and travelers who are in county i, is  ​​
d​ i​ 

loc​  =  ​ ​C​ i​​ _ ​P​ i​ 
*​​​.

As a result of travel, residents of county i end 
up consuming an amount of the resource  ​​C​ i​ 

*​  ≠  ​C​ i​​​: 
Those who have not left the county have to share 
the endowment Ci with travelers from other coun-
ties, and those who have traveled share parts of the 
resource endowment of other counties. Therefore, 
residents of county i experience an effective density ​​
d​ i​ 

*​  =  ​​C​ i​ 
*​ _ ​P​ i​​ ​​ , where effective captures the fact that, from 

the point of view of residents of county i, the “endow-
ment of the health resource is Ci

* , not Ci. The effec-
tive density di

* is the smoothed version of the density 
we are looking for. 

To derive the formulas for the smoothed density 
di

*, we assume that we know the travel patterns. We 
denote by ωij the proportion of residents of county 
i who travel to county j seeking better access to a 
health care resource. The number of people traveling 

from county i to county j is stored in the matrix p, 
which we refer to as the travel matrix:

​​p​ ij​​  =  ​ω​ ij​​ ​P​ j​​​
After traveling, the population of a county 

includes the residents who have not traveled and 
travelers from other regions. The size Pi

* of this popu-
lation is therefore 

​​P​ i​ 
*​  =  ​∑ 

j
​  ​​p​ ij​​​ ​

The amount of resource Ci
*consumed by the 

residents of county i is equal to the following:

​​C​ i​ 
*​  =  ​p​ ii​​ ​d​ i​ 

loc​ + ​∑ 
j≠i

​ ​​p​ ij​​​ ​d​ j​ 
loc​  =  ​∑ 

j
​  ​​ 

​p​ ij​​ _ ​P​ j​ 
*​ ​​ ​C​ j​​​

The first term in the formula above accounts for 
the residents who do not travel: There are pii of them, 
and the amount of resource per capita available to 
them is ​​d​ i​ 

loc​  =  ​ ​C​ i​​ _ ​P​ i​ 
*​​​. The second term accounts for the 

travelers. There are pij residents of county i who travel 
to county j, where the local density of the resource is ​​
d​ i​ 

loc​​.
The formula for Ci

* makes clear that allowing 
residents to travel is equivalent to having residents 
stay in their county but redistributing the health 
resource across counties using a linear smoothing 
operation: The endowment of a county is replaced by 
a weighted average of the endowments of the other 
counties, with weights defined by the travel matrix p. 
It is easily verified that ​​∑ i​​ ​C​ i​ 

*​​  =  ​∑ i​​ ​C​ i​​​​ so that the total 
capacity remains constant. The smoothed, effective 
density is therefore derived as

​​d​ i​ 
*​  =  ​ 

​C​ i​ 
*​
 _ ​P​ i​​
 ​  =  ​ 1 _ ​P​ i​​

 ​ ​∑ 
j
​  ​​ 

​p​ ij​​ _ ​P​ j​ 
*​ ​​ ​C​ j​​​

Therefore, to smooth the densities of resources, 
in addition to the raw capacity data Ci, all we need is 
the travel matrix p.

Estimating the Travel Matrix

To determine the number pij of residents of county 
i who travel to county j, we developed a simple 
model of traveling behavior based on the following 
assumptions:

•	 Individuals benefit from accessing a health 
resource, and they are willing to travel to 
maximize this benefit (which we also refer to 
as utility).
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•	 The utility associated with accessing a health 
resource in a certain county is proportional 
to the local density of the resource in that 
county.

•	 There are barriers to travel, which can be 
quantified by a cost parameter.

•	 The cost of travel is proportional to the dis-
tance traveled, and the cost per unit of dis-
tance is a parameter γ.

•	 The utility and costs of traveling are aggre-
gated at the county level, so that the determi-
nation of how many people travel is also made 
at the county level. 

Based on the assumptions above, if pij individuals 
travel from county i to county j, they receive a total 
utility of ​​d​ j​ 

loc​ ​p​ ij​​​ and experience a travel cost equal to ​
γ ​p​ ij​​ ​D​ ij​​​ , where Dij is the distance between counties i 
and j. Therefore, we can write the utility accruing to 
county i from the travel pattern pij as

​​U​ i​​  =  ​∑ 
j
​  ​​p​ ij​​​​(​d​ j​ 

loc​​(p)​ − γ ​D​ ij​​)​​

where we highlight the fact that ​​d​ j​ 
loc​​  depends on the 

entire travel matrix p.
The travel matrix p is determined by using an 

iterative best-response approach, where the utility of 
a county is maximized while taking the choices from 
all other counties as given, and cycling through all 
the counties until an equilibrium is reached where 
no county has the incentive to change their travel 
pattern. The existence of an equilibrium is guaran-
teed by noticing that this problem is an instance of a 
congestion game (Rosenthal, 1973), where the utility 
that accrues to each player from utilizing a scarce 
resource depends on the number of players utilizing 
the same resource. Congestion games have the prop-
erty that a pure Nash equilibrium always exists, and 
it can be determined using the best-response iterative 
procedure described above. 

The only free parameter in this procedure is the 
parameter γ, which represents the barriers to travel, 
and acts as a smoothing parameter: For larger values 
of γ, people travel less and less smoothing takes place, 
while for smaller values of γ, people can move more 
freely and resources are widely shared, leading to a 
more equal distribution of resources. Each value of 
γ determines the Gini index of the distribution of 
resources in a state, and, therefore, when we establish 

a target for the Gini index, we can back out the cor-
responding value of γ. 

An example of the smoothing algorithm applied 
to the PET scanner capacity in Texas is shown in 
Figure B.2. The top and bottom panels of the figure 
show, respectively, the raw and smoothed number 
of PET scans per million in Texas. In the northern 
region of Texas, many patients are able to take advan-
tage of a fairly highly density of PET scans in few 
counties, so the smoothed density is fairly high in 
this region. Individuals who live at greater distance 
from PET scanners, such as those in western Texas or 
those living near the borders, are the ones who have 
the most limited access to PET scanners.

Allowing a Portion of the Population to Have 
No Barriers to Travel

The model described above assumes that the bar-
rier to travel is a function of distance and that all 
individuals in a county face the same level of barrier. 
But barrier to travel could vary. For example, some 
individuals may choose to fly to get care, and they 
do not necessarily fly to the nearest counties with 
higher capacity. To make the model more realistic 
and introduce some heterogeneity in travel patterns, 
we made a small modification to the model above 
and assumed that in each county, there is a small 
proportion of the population (10 percent) that faces 
no barriers to travel. In reality, some counties may 
have a higher or lower proportion of the population 
that faces no barriers to travel; however, we assumed 
10 percent for all counties for simplicity. As a result, 
the final density pattern is modeled as a weighted 
average of the uniform density pattern that would 
result if everybody could travel freely (with weight 
0.1) and the smoothed pattern corresponds to a cost 
of travel equal to γ. 

Alternative Methodologies

The smoothing algorithm described in this appendix 
is not the only methodology we could have used. On 
the simpler side, we could have developed an algo-
rithm that redistributed the total capacity according 
to some “distance decay,” similar to what is often 
done in building catchment areas (Luo and Qi, 2009). 
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FIGURE B.2

Raw and Smoothed PET Scanner Density per Million, in Texas
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The main drawback of such a method would be the 
failure to take into account any congestion effect. 

A more sophisticated approach would have been 
to incorporate the congestion effects directly into 
the simulation: As people queue and waiting times 
become longer, people would switch the location 
where they access services, seeking shorter queues. 
The advantage of this approach is that it would 
directly incorporate the wait times observed in the 
simulation. However, while in principle feasible, 
this would have made the simulation much more 
complex and resource-intensive to run. Because not 
enough is known about cross-county travel patterns 
for receiving care related to cognitive impairment, it 
is not obvious that this would have led to increased 
accuracy. In addition, this type of modeling would 
have been more appropriate in the context of a 
microsimulation, which models behaviors at indi-
vidual levels. The current approach, based on a utility 
maximization principle, could easily be adapted and 
incorporated into this a microsimulation. However, a 
full microsimulation is well beyond the scope of this 
study.   

Steps in the Simulation

The simulation model represents patients as groups 
of people who move through the health system 
resources in the clinical pathway. A group is defined 
by its size (i.e., the number of people in the group), 
its health states (i.e., the proportion of the people 
in the group who have normal cognition, MCI, or 
dementia), its location in the clinical pathway, and 
the timestep at which it entered the queue for each 
resource. Groups can be split at points in the clini-
cal pathway. For instance, if 30 percent of individu-
als in a group of 200 people do not seek a specialist 
after a positive cognitive assessment, then the group 
would be split into a group of 140 who seek a special-
ist and a group of 60 who do not. Groups can also be 
combined. For example, if two groups of 300 arrive 
at a unit at the same time, then they can be com-
bined into a group of 600, preserving the health state 
proportions.

The logic for how groups flow through the 
model is defined for each unit described below. The 
timestep for moving between units is monthly.

•	 A Service Unit represents a health care 
resource, which can be PCPs, specialists, PET 
scanners, and outpatient RNs and LPNs. Each 
Service Unit has a predefined capacity for each 
timestep and geography. At each timestep, any 
group arriving at a Service Unit is put at the 
back of its queue. The Service Unit serves a 
number of patients from the front of the queue 
that is equal to its capacity, splitting groups 
when necessary. When there are multiple uses 
of the same resource, such as multiple visits 
to specialists, each use has a priority attached. 
The Service Units first serves in order of pri-
ority and then in order of arrival. There are 
two types of Service Units:

	Ȥ A Test Unit administers a clinical assess-
ment or test. Tests are defined by sensitiv-
ity, specificity, and a set of health states 
they are attempting to test for. Test results 
can either be positive or negative and will 
generate false positives and negatives. 
Results are determined by multiplying the 
population in each health state by its sensi-
tivity or specificity. After testing, patients 
move on different paths, with patient and 
clinical decisions made based on the test 
results, not the true underlying health 
states. In addition, patients make decisions 
such as whether to return for cognitive 
assessment. We modeled decisions as prob-
abilistic, implemented as proportions (e.g., 
a group of 100 with 30 percent probability 
to seek a specialist and 70 percent probabil-
ity to return for assessment next year would 
result in a group of 30 moving to the spe-
cialist queue and a group of 70 returning to 
the cognitive assessment pool).

	Ȥ A Treatment Unit modifies health states. 
This unit moves individuals from an 
(untreated) MCI due to AD state to a 
treated MCI due to AD state. The treated 
MCI due to AD state has a lower probabil-
ity of developing Alzheimer’s dementia.

•	 A Pool Unit represents groups waiting to 
make decisions. At each timestep, a fraction of 
the groups in the pool leaves the pool, and this 
fraction can vary by health state. In the model, 
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the cognitive assessment pool represents 
people who are eligible for cognitive assess-
ments but have not yet undergone one that 
year. We assume that people with cognitive 
impairment are more likely to receive cogni-
tive assessments than people with normal 
cognition, and so those with cognitive impair-
ment leave the pool at a higher rate.

•	 A Wait Unit represent groups with wait times 
of a fixed length, such as waiting 12 months 
before returning for a cognitive assessment.

•	 An Outflow Unit tracks groups who perma-
nently leave the clinical pathway when they 
die, decide to stop seeking care, or finish 
treatment. This allows the simulation to keep 
track of individuals after treatment and to 
continue to advance their health states.

Health state changes are simulated through a 
simple transition matrix. Once per year, we apply 
the transition matrix to the health states for every 
group, yielding the new health states for the next 
year. Deaths are moved to the Outflow Unit. Health 
state advancement occurs annually because monthly 
health state transitions are computationally intensive 
and yield similar results to annual transitions.

This model can simulate different geographic 
levels, including nationally, by state, or by county. 
Each geography is an independent simulation with its 
own population and capacity inputs, though geogra-
phies use the same parameters (such as the accuracy 
of testing). In the first model timestep, everyone 
who is age 50 and older in each geography enters the 
model. In subsequent timesteps, people who turn 
age 50 enter the model. Not everyone who enters the 
model receives treatment—e.g., there are patient deci-
sions on whether to visit a provider.

At the end of the simulation, the model outputs 
the following three metrics: 

•	 Queue sizes are the number of people waiting 
in a queue for a unit in each geography and 

timestep. Queue sizes are reported nationally 
by summing across all geographies. 

•	 Individuals treated is the number of people 
with MCI due to AD who receive treatment. 
We did not count treated individuals who do 
not have MCI due to AD (but were incorrectly 
determined to have MCI due to AD—i.e., a 
false positive) because they do not derive ben-
efit from treatment. The number of individu-
als treated is reported nationally by summing 
across all geographies. 

•	 Wait times are the average amount of time 
people wait to get served for a unit in each 
geography and timestep. This is complex to 
compute because patients can loop through 
the clinical flow several times or elect not to 
follow referrals. To get around this problem, 
we first calculated the wait time at a unit for 
each group as the difference between when the 
group entered the queue for the unit and when 
they were served by the unit. We then aggre-
gated these group-level waits to estimate aver-
age waits. When reporting wait times by year, 
we averaged across the unit and year of entry. 
We reported aggregate waits over a period 
of time by averaging across the time period 
and summing the unit waits. At the end of 
the simulation, not everyone will have exited 
their queues. This can bias the estimated wait 
time downwards because their actual wait 
time is longer and extends beyond the end 
of the simulation. To solve this issue, we ran 
additional years (e.g., five more years) to clear 
most people who entered queues and extrapo-
late the wait times for people who remain 
in the queue based on capacity, the number 
of people ahead of them, and the number of 
people ahead of them who will die (and there-
fore leave the queue).
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APPENDIX C

Example Questions from Semi-
Structured Interview Protocol

A. Cognitive Assessment

1.	 What type of cognitive assessments do pri-
mary care providers typically perform? E.g., 
Mini-Mental State Examination (MMSE) and 
Montreal Cognitive Assessment (MoCA).

2.	 What share of PCP visits do you think could 
be allocated to perform cognitive assessments 
on the population aged 50+? 

3.	 How would telehealth affect PCP capacity to 
perform cognitive assessments?

4.	 Assuming one or more AD therapies is avail-
able with reasonable effectiveness, what share 
of the population age 50+ do you think would 
seek cognitive assessment each year?

5.	 If a blood-based biomarker test for the detec-
tion of beta-amyloid was available, would you 
expect PCPs to administer these tests and 
triage patients for specialist referral? How 
might this affect patient uptake for cognitive 
screening? 

6.	 Of patients with MCI based on a cognitive 
assessment, what share would be referred to 
and seek further evaluation with a dementia 
specialist?

B. Diagnosis and Patient Eligibility for 
Treatment

7.	 What share of specialist visits could be allo-
cated to evaluating patients with MCI to 
determine eligibility for amyloid biomarker 
testing and treatment? 

8.	 How would telehealth affect specialist capac-
ity to evaluate patients with MCI?

9.	 We expect a patient’s trajectory through the 
diagnostic steps would be affected by a com-

bination of clinical judgment and patient 
uptake.
a.	 Of MCI patients evaluated by dementia 

specialists, what share would be referred for 
biomarker testing? Of those, what share of 
patients would get tested?

b.	 If there are no specific contraindications 
for the therapy, are there conditions or 
circumstances for which you would expect 
treatment to not be recommended?

c.	 Of patients with a clinically relevant amy-
loid burden based on biomarker testing, 
what share would receive treatment?

C. Treatment

10.	 We assume that an AD therapy administered 
by intravenous (IV) infusion would likely 
occur in outpatient infusion centers. 
a.	 Who would likely administer infusions? 

E.g., what type of nurses: all registered 
nurses, advanced practice registered nurse 
with NPI [National Provider Identifier], 
nurse practitioner with NPI, clinical nurse 
specialist with NPI? 

b.	 Is it reasonable to assume that the capacity 
to administer IV infusions would be lim-
ited by the nursing workforce?

c.	 Would it be reasonable to assume that cur-
rent nurses have some excess capacity to 
administer infusions? E.g., 10%?	

d.	 How easily could people be newly trained 
to administer infusions?

Is there anything we did not discuss today that 
you feel is important for us to understand the clinical 
practice and relevant capacity issues from your point 
of view?
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Notes
1  We considered including a pathway by which people would skip the PCP visit and go directly to a specialist, which may occur for some 
people with preferred provider organization plans or traditional Medicare. However, this would be rare for people with normal cognition 
and possibly those with MCI, unlikely for rural populations who have limited access to specialists because of shortages of specialists, and 
limited because of difficulties getting appointments with specialists even in urban areas.
2  CSF can also be used as a biomarker test; however, the AD DMT clinical trials to date have used amyloid PET scans for confirmatory 
biomarker testing.
3  We used AHRF data that draw from the American Medical Association Physician Masterfiles and excludes physicians aged 75 and 
older. We focused on primary care physicians in patient care and excluded hospital residents.
4  In the status quo, we assume that the annual patient uptake for a brief cognitive assessment is about 7 percent, reflecting approximately 
16 percent of people age 65 and older undergoing cognitive assessment each year (Alzheimer’s Association, 2019) and rare occurrences of 
cognitive assessment for those under age 65. The share of PCP visits for brief cognitive assessment is 1 percent, which is the presence of 
AD at office visits (Santo and Kang, 2023).
5  In 2025, we estimate that 84.5 percent of the age 50+ population resides in urban counties, 10.3 percent in suburban counties, and 
5.2 percent in rural counties.
6  Information on patient care-seeking behaviors collected from the American Life Panel is from unpublished RAND Corporation 
research by Susann Rohwedder, Péter Hudomiet, and Michael D. Hurd.
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Abbreviations

AAMC Association of American Medical Colleges

AD Alzheimer’s disease

AHRF Area Health Resources File

ARIA amyloid-related imaging abnormalities

CDC Centers for Disease Control and Prevention

CMS Centers for Medicare & Medicaid Services

CSF cerebrospinal fluid

DMT disease-modifying therapy

FDA U.S. Food and Drug Administration

HRSA Health Resources and Services Administration

IV intravenous

LPN licensed practical nurse

MCI mild cognitive impairment

MoCA Montreal Cognitive Assessment

NAMCS National Ambulatory Medical Care Survey

NHAMCS National Hospital Ambulatory Medical Care Survey

NP nurse practitioner

OECD Organisation for Economic Co-operation and Development

PA physician assistant

PCP primary care practitioner

PET positron emission tomography

RN registered nurse
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